
Chapter 3

1

2

3.1 Algorithms
 Introduction

 Given a sequence of integers, find the largest one

 Given a set, list all of his subsets

 Given a set of integers, put them in increasing order

 Given a network, find the shortest path between two
vertices

3

Algorithms (3.1) (cont.)
 Methodology:

 Construct a model that translates the problem into a
mathematical context

 Build a method that will solve the general problem using
the model

Ideally, we need a procedure that follows a sequence of
steps that leads to the desired answer. Such a sequence is
called an algorithm.

4

Algorithms (3.1) (cont.)
 Definition:

An algorithm is a finite set of precise instructions for
performing a computation or for solving a problem.

 Example: Describe an algorithm for finding the largest value
in a finite sequence of integers

Solution: We perform the following steps:

5

Algorithms (3.1) (cont.)
1. Set the temporary maximum equal to the first integer in the

sequence
2. Compare the next integer in the sequence to the temporary

maximum, and if it is larger that the temporary maximum,
set the temporary maximum equal to this integer

3. Repeat the previous step if there are more integers in the
sequence

4. Stop when there are no integers left in the sequence. The
temporary maximum at this point is the largest integer in
the sequence

Pseudocode: intermediate step between an English language
description of an algorithm and an implementation of this
algorithm in a programming language

6

Algorithms (3.1) (cont.)
Algorithm: Finding the maximum element in a finite

sequence

Procedure max(a1, a2, …, an: integer)

max := a1

For i := 2 to n

If max < ai then max := ai

{max is the largest element}

7

Algorithms (3.1) (cont.)
 Properties of an algorithm:

 Input: an algorithm has input values from a specified set

 Output: from each set of input values an algorithm produces output values
from a specified set. The output values are the solution to the problem

 Definiteness: the steps of an algorithm must be defined precisely

 Correctness: an algorithm should produce the correct output values for
each set of input values

 Finiteness: an algorithm should produce the desired output after a finite
(but perhaps large) number of steps for input in the set

 Effectiveness: it must be possible to perform each step of an algorithm
exactly and in a finite amount of time

 Generality: the procedure should be applicable for all problems of the
desired form not just for a particular set of input values.

8

Algorithms (3.1) (cont.)
 Searching Algorithms

 Problem: “Locate an element x in a list of distinct
elements a1, a2, …, an, or determine that it is not in the
list.”

We should provide as a solution to this search problem
the location of the term in the list that equals x.

9

Algorithms (3.1) (cont.)
 The linear search

Algorithm: The linear search algorithm

Procedure linear search(x: integer, a1, a2, …, an:

distinct integers)

i := 1

while (i n and x ai)

i := i + 1

if i n then location := i

else location := 0

{location is the subscript of the term that equals

x, or is 0 if x is not found}

10

Algorithms (3.1) (cont.)
 The binary search

 Constraint: can be used when the list has terms occurring in
order of increasing size (words listed in lexicographic order)

 Methodology: Compare the element to be located to the middle
term of the list

11

Algorithms (3.1) (cont.)
 Example: Search 19 in the list

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

 split the list into 2 subsets with 8 terms each

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

 Compare 19 with the largest element of the first set

10< 19 search 19 in the second set

 Split the second subset into 2 smaller subsets

12 13 15 16 18 19 20 22

 Compare 19 with 16

16 < 19 search 19 in the second set

 Split the second subset as: 18 19 20 22

 Compare 19 > 19 is false search 19 in 18 19

 Split the subset as : 18 19

 Since 18 < 19 search restricted to the second list

 Finally 19 is located at the 14th element of the original list

12

Algorithms (3.1) (cont.)
Algorithm: the binary search algorithm

Procedure binary search (x: integer, a1, a2,…,an:
increasing integers)

i := 1 {i is left endpoint of search interval}

j := n {j is right endpoint of search interval}

While i < j

Begin

m := (i + j)/2

If x > am then i := m + 1

else j := m

End

If x := ai then location := i

Else location := 0

{location is the subscript of the term equal to x, or 0
if x is not found}

13

Algorithms (3.1) (cont.)
 Sorting

 Goal:

“Order the elements of a list”. For example, sorting the
list 7, 2, 1, 4, 5, 9 produces the list 1, 2, 4, , 5, 7, 9.
Similarly, sorting the list d, h, c, a, f produces a, c, d, f, h.

14

 The Bubble sort

 Example: Sort the list 3, 2, 4, 1, 5 into increasing order using
the Bubble sort

3

2

4

1

5

2

3

4

1

5

2

3

4

1

5

2

3

1

4

5

2

3

1

4

5

2

3

1

4

5

2

1

3

4

5

2

1

3

4

5

1

2

3

4

5

1st pass 2nd pass 3rd pass 4th pass

Steps of the Bubble sort

= ordered = permute

15

Algorithms (3.1) (cont.)

Algorithm: the Bubble sort

Procedure Bubblesort (a1, …, an)

for i := 1 to n-1 {count number of passes}

for j := 1 to n-i

if aj > aj+1 then interchange aj and aj+1

{a1, …, an is the increasing order}

16

Algorithms (3.1) (cont.)
 Greedy algorithms

 Goal: Solving optimization problems. Find a solution to the
given problem that either minimizes or maximizes the value
of some parameter

 Some examples that involves optimization:

 Find a route between 2 cities with smallest total mileage

 Determine a way to encode messages using the fewest bits possible

 Find a set of fiber links between networks nodes using the least
amount of fiber

17

Algorithms (3.1) (cont.)
 The change making problem

 Problem statement: Consider the problem of making n cents
change with quarters, dimes, nickels and pennies, and using the
least total number of coins.

 For example, to make change for 67 cents, we do the following:

1. Select a quarter, leaving 42 cents

2. Select a second quarter, leaving 17 cents

3. Select a dime, leaving 7 cents

4. Select a nickel, leaving 2 cents

5. Select a penny, leaving 1 cent

6. Select a penny.

18

Algorithms (3.1) (cont.)

Algorithm: Greedy change making

Procedure change (c1, c2, …, cr: values of

denominations of coins where c1 > c2 >…> cr; n:

positive integer)

For i := 1 to r

while n ci

begin

add a coin with value ci to the change

n := n-ci

end

19

Algorithms (3.1) (cont.)
 Remark: if we have only quarters, dimes and pennies the

change for 30 cents would be made using 6 coins = 1 quarter +
5 pennies.

Whereas a better solution is equal to 3 coins = 3 dimes!

Therefore:

“The greedy algorithm selects the best choice at each step,
instead of considering all sequences of steps that may lead to
an optimal solution. The greedy algorithm often leads to a
solution!”

20

The Growth of Functions (Section 3.2)

 We quantify the concept that g grows at least as fast as f.

 What really matters in comparing the complexity of
algorithms?

 We only care about the behavior for large problems.

 Even bad algorithms can be used to solve small problems.

 Ignore implementation details such as loop counter
incrementation, etc. We can straight-line any loop.

21

The Growth of Functions (3.2)
(cont.)

 The Big-O Notation

 Definition: Let f and g be functions from N to R.

Then g asymptotically dominates f, denoted f is O(g) or 'f is
big-O of g,' or 'f is order g,' iff

k C n [n > k |f(n)| C |g(n)|]

 Note:

 Choose k

 Choose C; it may depend on your choice of k

 Once you choose k and C, you must prove the truth of the
implication (often by induction)

22

The Growth of functions (3.2)
(cont.)

 Also note that O(g) is a set called a

complexity class.

 It contains all the functions which g dominates.

f is O(g) means f O(g).

23

The Growth of functions (3.2)
(cont.)

 Example:

Suppose

Algorithm 1 has complexity n2 - n + 1

Algorithm 2 has complexity n2/2 + 3n +2

Then both are O(n2) but Algorithm 2 has a smaller leading
coefficient and will be faster for large problems.

Hence we write

Algorithm 1 has complexity n2 + O(n)

Algorithm 2 has complexity n2/2 + O(n)

24

Complexity of Algorithms (3.3)

 Time Complexity: Determine the approximate number
of operations required to solve a problem of size n.

 Space Complexity: Determine the approximate memory
required to solve a problem of size n.

25

Complexity of Algorithms (3.3)
(cont.)
 Time Complexity

 Use the Big-O notation

 Ignore house keeping

 Count the expensive operations only

 Basic operations:

 searching algorithms - key comparisons

 sorting algorithms - list component comparisons

26

Complexity of Algorithms (3.3)
(cont.)
 Worst Case: maximum number of operations

 Average Case: mean number of operations assuming
an input probability distribution

27

Complexity of Algorithms (3.3)
(cont.)
 Examples:

 Multiply an n x n matrix A by a scalar c to produce the matrix B:

procedure (n, c, A, B)

for i from 1 to n do

for j from 1 to n do

B(i, j) = cA(i, j)

end do

end do

Analysis (worst case):

Count the number of floating point multiplications.

n2 elements requires n2 multiplications.

time complexity is

O(n2) or quadratic complexity.

28

Complexity of Algorithms (3.3)
(cont.)

 Multiply an n x n upper triangular matrix A
A(i, j) = 0 if i > j

by a scalar c to produce the (upper triangular) matrix B.

procedure (n, c, A, B)

/* A (and B) are upper triangular */

for i from 1 to n do

for j from i to n do

B(i, j) = cA(i, j)

end do

end do

Analysis (worst case):

29

Complexity of Algorithms (3.3)
(cont.)

 Bubble sort: L is a list of elements to be sorted.

 We assume nothing about the initial order
 The list is in ascending order upon completion.

Analysis (worst case):
Count the number of list comparisons required.

Method: If the jth element of L is larger than the (j +
1)st, swap them.

Note: this is not an efficient implementation of the
algorithm

30

Complexity of Algorithms (3.3)
(cont.)

procedure bubble (n, L)

/*

- L is a list of n elements

- swap is an intermediate swap location

*/

for i from n - 1 to 1 by -1 do

for j from 1 to i do

if L(j) > L(j + 1) do

swap = L(j + 1)

L(j + 1) = L (j)

L(j) = swap

end do

end do

end do

31

Complexity of Algorithms (3.3)
(cont.)

 Bubble the largest element to the 'top' by starting at the
bottom - swap elements until the largest in the top position.

 Bubble the second largest to the position below the top.
 Continue until the list is sorted.

n-1 comparison on the first pass
n-2 comparisons on the second pass

.

.

.

1 comparison on the last pass

Total:
(n - 1)+ (n - 2) + + 1 = O(n2) or quadratic complexity

(what is the leading coefficient?)

32

Complexity of Algorithms (3.3)
(cont.)

 An algorithm to determine if a function f from A to B is
an injection:

Input: a table with two columns:
 Left column contains the elements of A.
 Right column contains the images of the elements in

the left column.

Analysis (worst case):
Count comparisons of elements of B.

Recall that two elements of column 1 cannot have the
same images in column 2.

