Algorithms
Chapter 3

3.1 Algorithms

- Introduction
- Given a sequence of integers, find the largest one
- Given a set, list all of his subsets
- Given a set of integers, put them in increasing order
- Given a network, find the shortest path between two vertices

Algorithms (3.1) (cont.)

- Methodology:
- Construct a model that translates the problem into a mathematical context
- Build a method that will solve the general problem using the model

Ideally, we need a procedure that follows a sequence of steps that leads to the desired answer. Such a sequence is called an algorithm.

Algorithms (3.1) (cont.)

- Definition:

An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.

- Example: Describe an algorithm for finding the largest value in a finite sequence of integers

Solution: We perform the following steps:

Algorithms (3.1) (cont.)

1. Set the temporary maximum equal to the first integer in the sequence
2. Compare the next integer in the sequence to the temporary maximum, and if it is larger that the temporary maximum, set the temporary maximum equal to this integer
3. Repeat the previous step if there are more integers in the sequence
4. Stop when there are no integers left in the sequence. The temporary maximum at this point is the largest integer in the sequence

Pseudocode: intermediate step between an English language description of an algorithm and an implementation of this algorithm in a programming language

Algorithms (3.1) (cont.)

Algorithm: Finding the maximum element in a finite sequence

Procedure max $\left(a_{1}, a_{2}, \ldots, a_{n}\right.$: integer) $\max :=a_{1}$
For $i=2$ to n
If max $<a_{i}$ then max $:=a_{i}$
\{max is the largest element \}

Algorithms (3.1) (cont.)

- Properties of an algorithm:
- Input: an algorithm has input values from a specified set
- Output: from each set of input values an algorithm produces output values from a specified set. The output values are the solution to the problem
- Definiteness: the steps of an algorithm must be defined precisely
- Correctness: an algorithm should produce the correct output values for each set of input values
- Finiteness: an algorithm should produce the desired output after a finite (but perhaps large) number of steps for input in the set
- Effectiveness: it must be possible to perform each step of an algorithm exactly and in a finite amount of time
- Generality: the procedure should be applicable for all problems of the desired form not just for a particular set of input values.

Algorithms (3.1) (cont.)

- Searching Algorithms
- Problem: "Locate an element x in a list of distinct elements $a_{1}, a_{2}, \ldots, a_{n}$, or determine that it is not in the list."

We should provide as a solution to this search problem the location of the term in the list that equals x.

Algorithms (3.1) (cont.)

- The linear search

Algorithm: The linear search algorithm

```
Procedure linear search(x: integer, a , a, a , .., an:
    distinct integers)
i := 1
while (i }\leqn\mathrm{ and }x\not=\mp@subsup{a}{i}{}
    i := i + 1
if i \leq n then location := i
else location := 0
{location is the subscript of the term that equals
    x, or is 0 if x is not found}
```


Algorithms (3.1) (cont.)

- The binary search
- Constraint: can be used when the list has terms occurring in order of increasing size (words listed in lexicographic order)
- Methodology: Compare the element to be located to the middle term of the list

Algorithms (3.1) (cont.)

- Example: Search 19 in the list

$$
1235678101213151618192022
$$

- split the list into 2 subsets with 8 terms each

$$
123567810 \quad 1213151618192022
$$

- Compare 19 with the largest element of the first set

$$
10<19 \Rightarrow \text { search } 19 \text { in the second set }
$$

- Split the second subset into 2 smaller subsets

$$
12131516 \quad 18192022
$$

- Compare 19 with 16
$16<19 \Rightarrow$ search 19 in the second set
- Split the second subset as: $1819 \quad 20 \quad 22$
- Compare $19>19$ is false \Rightarrow search 19 in 1819
- Split the subset as : 1819
- Since $18<19 \Rightarrow$ search restricted to the second list
- Finally 19 is located at the $14^{\text {th }}$ element of the original list

Algorithms (3.1) (cont.)

Algorithm: the binary search algorithm

Procedure binary search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: increasing integers)
i $:=1$ \{i is left endpoint of search interval\}
$j:=n$ \{j is right endpoint of search interval\}
While $i<j$
Begin

$$
\begin{aligned}
& m:=\lfloor(i+j) / 2\rfloor \\
& \text { If } x>a_{m} \text { then } i:=m+1 \\
& \text { else } j:=m
\end{aligned}
$$

End
If $x:=a_{i}$ then location $:=i$
Else location $:=0$
\{location is the subscript of the term equal to x, or 0 if x is not found\}

Algorithms (3.1) (cont.)

- Sorting
- Goal:
"Order the elements of a list". For example, sorting the list $7,2,1,4,5,9$ produces the list $1,2,4,, 5,7,9$. Similarly, sorting the list d, h, c, a, f produces a, c, d, f, h.

Steps of the Bubble sort

3	2	2	2	2	2	2		2	(1)
2	3	3	3	\bigcirc	3	1		1	\bigcirc
4	\checkmark_{4}	4	1	1	1	3		3	3
1	1	1	4	4	4			4	4
5	5	5	5	5	5	5		5	5
	$1^{\text {st }}$ pas				pa		$3^{\text {rd }} \mathrm{P}$	pass	$4^{\text {th }}$ pass

$G=$ ordered
$=$ permute

Algorithms (3.1) (cont.)

Algorithm: the Bubble sort

Procedure Bubblesort (a_{1}, \ldots, a_{n}) for i := 1 to $n-1$ \{count number of passes\} for j := 1 to n-i
if $a_{j}>a_{j+1}$ then interchange a_{j} and a_{j+1} $\left\{a_{1}, \ldots, a_{n}\right.$ is the increasing order\}

Algorithms (3.1) (cont.)

- Greedy algorithms
- Goal: Solving optimization problems. Find a solution to the given problem that either minimizes or maximizes the value of some parameter
- Some examples that involves optimization:
- Find a route between 2 cities with smallest total mileage
- Determine a way to encode messages using the fewest bits possible
- Find a set of fiber links between networks nodes using the least amount of fiber

Algorithms (3.1) (cont.)

- The change making problem
- Problem statement: Consider the problem of making n cents change with quarters, dimes, nickels and pennies, and using the least total number of coins.
- For example, to make change for 67 cents, we do the following:

1. Select a quarter, leaving 42 cents
2. Select a second quarter, leaving 17 cents
3. Select a dime, leaving 7 cents
4. Select a nickel, leaving 2 cents
5. Select a penny, leaving 1 cent
6. Select a penny.

Algorithms (3.1) (cont.)

Algorithm: Greedy change making

Procedure change $\left(C_{1}, C_{2}, \ldots, C_{r}\right.$: values of denominations of coins where $c_{1}>c_{2}>\ldots>c_{r}$; n : positive integer)
For i := 1 to r
while $n \geq c_{i}$
begin
add a coin with value c_{i} to the change $\mathrm{n}:=\mathrm{n}-\mathrm{c}_{\mathrm{i}}$
end

Algorithms (3.1) (cont.)

- Remark: if we have only quarters, dimes and pennies \Rightarrow the change for 30 cents would be made using 6 coins $=1$ quarter + 5 pennies.

Whereas a better solution is equal to 3 coins $=3$ dimes!
Therefore:
"The greedy algorithm selects the best choice at each step, instead of considering all sequences of steps that may lead to an optimal solution. The greedy algorithm often leads to a solution!"
the Growth of Functions (Section 3.2)

- We quantify the concept that g grows at least as fast as f.
- What really matters in comparing the complexity of algorithms?
- We only care about the behavior for large problems.
- Even bad algorithms can be used to solve small problems.
- Ignore implementation details such as loop counter incrementation, etc. We can straight-line any loop.

The Growth of Functions (3.2)

cont.)

- The Big-O Notation
- Definition: Let f and g be functions from N to R .

Then g asymptotically dominates f, denoted f is $\mathrm{O}(\mathrm{g})$ or ' f is big-O of g,' or 'f is order g,' iff

$$
\exists \mathrm{k} \exists \mathrm{C} \forall \mathrm{n}[\mathrm{n}>\mathrm{k} \rightarrow|\mathrm{f}(\mathrm{n})| \leq \mathrm{C}|\mathrm{~g}(\mathrm{n})|]
$$

- Note:
- Choose k
- Choose C; it may depend on your choice of k
- Once you choose k and C, you must prove the truth of the implication (often by induction)

The Growth of functions (3.2)
(cont.)

- Also note that $\mathrm{O}(\mathrm{g})$ is a set called a

complexity class.

- It contains all the functions which g dominates.
f is $\mathrm{O}(\mathrm{g})$ means $\mathrm{f} \in \mathrm{O}(\mathrm{g})$.

The Growth of functions (3.2)

(cont.)

- Example:

Suppose
Algorithm 1 has complexity $\mathrm{n}^{2}-\mathrm{n}+1$
Algorithm 2 has complexity $n^{2} / 2+3 n+2$

Then both are $\mathrm{O}\left(\mathrm{n}^{2}\right)$ but Algorithm 2 has a smaller leading coefficient and will be faster for large problems.

Hence we write
Algorithm 1 has complexity $n^{2}+O(n)$
Algorithm 2 has complexity $n^{2} / 2+O(n)$
omplexity of Algorithms (3.3)

- Time Complexity: Determine the approximate number of operations required to solve a problem of size n.
- Space Complexity: Determine the approximate memory required to solve a problem of size n.

Complexity of Algorithms (3.3)

(cont.)

- Time Complexity
- Use the Big-O notation
- Ignore house keeping
- Count the expensive operations only
- Basic operations:
- searching algorithms - key comparisons
- sorting algorithms - list component comparisons

Complexity of Algorithms (3.3)

 (cont.)- Worst Case: maximum number of operations
- Average Case: mean number of operations assuming an input probability distribution

Complexity of Algorithms (3.3)

- Examples:
- Multiply an nx n matrix A by a scalar c to produce the matrix B :

```
procedure ( }n,C,A,B
    for i from 1 to n do
        for j from 1 to n do
        B(i, j) = CA(i, j)
        end do
    end do
```

Analysis (worst case):
Count the number of floating point multiplications. n^{2} elements requires n^{2} multiplications. time complexity is
$\mathrm{O}\left(\mathrm{n}^{2}\right)$ or quadratic complexity.

Complexity of Algorithms (3.3)

(cont.)

- Multiply an n x n upper triangular matrix A

$$
A(i, j)=o \text { if } i>j
$$

by a scalar c to produce the (upper triangular) matrix B.

```
procedure (n, C, A, B)
/* A (and B) are upper triangular */
    for i from 1 to n do
        for j from i to n do
                        B(i, j) = cA(i, j)
        end do
    end do
```

Analysis (worst case):

Complexity of Algorithms (3.3)

 (cont.)- Bubble sort: L is a list of elements to be sorted.
- We assume nothing about the initial order
- The list is in ascending order upon completion.

Analysis (worst case):
Count the number of list comparisons required.
Method: If the j th element of L is larger than the $(j+$ 1)st, swap them.

Note: this is not an efficient implementation of the algorithm

Complexity of Algorithms (3.3)

 (cont.)```
procedure bubble (n, L)
/*
 - L is a list of n elements
 - swap is an intermediate swap location
*/
for i from n - 1 to 1 by -1 do
 for j from 1 to i do
 if L(j) > L(j + 1) do
 swap = L(j + 1)
 L(j + 1) = L (j)
 L(j) = swap
 end do
 end do
 end do
```


## (cont.)

- Bubble the largest element to the 'top' by starting at the bottom - swap elements until the largest in the top position.
- Bubble the second largest to the position below the top.
- Continue until the list is sorted.
$\mathrm{n}-1$ comparison on the first pass
$\mathrm{n}-2$ comparisons on the second pass

1 comparison on the last pass
Total:

$$
(n-1)+(n-2)+\ldots+1=O\left(n^{2}\right) \text { or quadratic complexity }
$$

(what is the leading coefficient?)

## Complexity of Algorithms (3.3)

 (cont.)- An algorithm to determine if a function $f$ from $A$ to $B$ is an injection:

Input: a table with two columns:

- Left column contains the elements of A.
- Right column contains the images of the elements in the left column.

Analysis (worst case):
Count comparisons of elements of $B$.
Recall that two elements of column 1 cannot have the same images in column 2.

